Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: covidwho-20239015

ABSTRACT

The effective antiviral agents that treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed around the world. The 3C-like protease (3CLpro) of SARS-CoV-2 plays a pivotal role in virus replication; it also has become an important therapeutic target for the infection of SARS-CoV-2. In this work, we have identified Darunavir derivatives that inhibit the 3CLpro through a high-throughput screening method based on a fluorescence resonance energy transfer (FRET) assay in vitro. We found that the compounds 29# and 50# containing polyphenol and caffeine derivatives as the P2 ligand, respectively, exhibited favorable anti-3CLpro potency with EC50 values of 6.3 µM and 3.5 µM and were shown to bind to SARS-CoV-2 3CLpro in vitro. Moreover, we analyzed the binding mode of the DRV in the 3CLpro through molecular docking. Importantly, 29# and 50# exhibited a similar activity against the protease in Omicron variants. The inhibitory effect of compounds 29# and 50# on the SARS-CoV-2 3CLpro warrants that they are worth being the template to design functionally improved inhibitors for the treatment of COVID-19.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Darunavir , Protease Inhibitors , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , COVID-19 , Darunavir/pharmacology , Molecular Docking Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Coronavirus 3C Proteases/antagonists & inhibitors
2.
Eur J Med Chem ; 223: 113622, 2021 Nov 05.
Article in English | MEDLINE | ID: covidwho-1263253

ABSTRACT

The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the global pandemic coronavirus disease (COVID-19), but no specific antiviral drug has been proven effective for controlling this pandemic to date. In this study, several 2-((indol-3-yl)thio)-N-benzyl-acetamides were identified as SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) inhibitors. After a two-round optimization, a new series of 2-((indol-3-yl)thio)-N-benzyl-acetamides was designed, synthesized, and evaluated for SARS-CoV-2 RdRp inhibitory effect. Compounds 6b2, 6b5, 6c9, 6d2, and 6d5 were identified as potent inhibitors with IC50 values of 3.35 ± 0.21 µM, 4.55 ± 0.2 µM, 1.65 ± 0.05 µM, 3.76 ± 0.79 µM, and 1.11 ± 0.05 µM, respectively; the IC50 of remdesivir (control) was measured as 1.19 ± 0.36 µM. All of the compounds inhibited RNA synthesis by SARS-CoV-2 RdRp. The most potent compound 6d5, which showed a stronger inhibitory activity against the human coronavirus HCoV-OC43 than remdesivir, is a promising candidate for further investigation.


Subject(s)
Acetamides/chemical synthesis , Antiviral Agents/chemical synthesis , COVID-19 Drug Treatment , Enzyme Inhibitors/chemical synthesis , RNA, Viral/antagonists & inhibitors , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , Acetamides/pharmacology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/standards , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/standards , Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Molecular Structure , Protein Binding , SARS-CoV-2/genetics , Structure-Activity Relationship
3.
Non-conventional in French | WHO COVID | ID: covidwho-276117
SELECTION OF CITATIONS
SEARCH DETAIL